Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Acta Pharmacol Sin ; 43(4): 771-780, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1315591

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can induce acute inflammatory response like acute lung inflammation (ALI) or acute respiratory distress syndrome, leading to severe progression and mortality. Therapeutics for treatment of SARS-CoV-2-triggered respiratory inflammation are urgent to be discovered. Our previous study shows that Salvianolic acid C potently inhibits SARS-CoV-2 infection. In this study, we investigated the antiviral effects of a Salvia miltiorrhiza compound, Danshensu, in vitro and in vivo, including the mechanism of S protein-mediated virus attachment and entry into target cells. In authentic and pseudo-typed virus assays in vitro, Danshensu displayed a potent antiviral activity against SARS-CoV-2 with EC50 of 0.97 µM, and potently inhibited the entry of SARS-CoV-2 S protein-pseudo-typed virus (SARS-CoV-2 S) into ACE2-overexpressed HEK-293T cells (IC50 = 0.31 µM) and Vero-E6 cell (IC50 = 4.97 µM). Mice received SARS-CoV-2 S via trachea to induce ALI, while the VSV-G treated mice served as controls. The mice were administered Danshensu (25, 50, 100 mg/kg, i.v., once) or Danshensu (25, 50, 100 mg·kg-1·d-1, oral administration, for 7 days) before SARS-CoV-2 S infection. We showed that SARS-CoV-2 S infection induced severe inflammatory cell infiltration, severely damaged lung tissue structure, highly expressed levels of inflammatory cytokines, and activated TLR4 and hyperphosphorylation of the NF-κB p65; the high expression of angiotensinogen (AGT) and low expression of ACE2 at the mRNA level in the lung tissue were also observed. Both oral and intravenous pretreatment with Danshensu dose-dependently alleviated the pathological alterations in mice infected with SARS-CoV-2 S. This study not only establishes a mouse model of pseudo-typed SARS-CoV-2 (SARS-CoV-2 S) induced ALI, but also demonstrates that Danshensu is a potential treatment for COVID-19 patients to inhibit the lung inflammatory response.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Humans , Lactates , Mice , Spike Glycoprotein, Coronavirus
2.
Adv Ther (Weinh) ; 4(5): 2000224, 2021 May.
Article in English | MEDLINE | ID: covidwho-1095226

ABSTRACT

SARS-CoV-2 caused the emerging epidemic of coronavirus disease in 2019 (COVID-19). To date, there are more than 82.9 million confirmed cases worldwide, there is no clinically effective drug against SARS-CoV-2 infection. The conserved properties of the membrane fusion domain of the spike (S) protein across SARS-CoV-2 make it a promising target to develop pan-CoV therapeutics. Herein, two clinically approved drugs, Itraconazole (ITZ) and Estradiol benzoate (EB), are found to inhibit viral entry by targeting the six-helix (6-HB) fusion core of SARS-CoV-2 S protein. Further studies shed light on the mechanism that ITZ and EB can interact with the heptad repeat 1 (HR1) region of the spike protein, to present anti-SARS-CoV-2 infections in vitro, indicating they are novel potential therapeutic remedies for COVID-19 treatment. Furthermore, ITZ shows broad-spectrum activity targeting 6-HB in the S2 subunit of SARS-CoV and MERS-CoV S protein, inspiring that ITZ have the potential for development as a pan-coronavirus fusion inhibitor.

3.
Front Pharmacol ; 11: 603830, 2020.
Article in English | MEDLINE | ID: covidwho-1058447

ABSTRACT

The global spread of the novel coronavirus SARS-CoV-2 urgently requires discovery of effective therapeutics for the treatment of COVID-19. The spike (S) protein of SARS-CoV-2 plays a key role in receptor recognition, virus-cell membrane fusion and virus entry. Our previous studies have reported that 3-hydroxyphthalic anhydride-modified chicken ovalbumin (HP-OVA) serves as a viral entry inhibitor to prevent several kinds of virus infection. Here, our results reveal that HP-OVA can effectively inhibit SARS-CoV-2 replication and S protein-mediated cell-cell fusion in a dose-dependent manner without obvious cytopathic effects. Further analysis suggests that HP-OVA can bind to both the S protein of SARS-CoV-2 and host angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV-2, and disrupt the S protein-ACE2 interaction, thereby exhibiting inhibitory activity against SARS-CoV-2 infection. In summary, our findings suggest that HP-OVA can serve as a potential therapeutic agent for the treatment of deadly COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL